Tamm-Horsfall glycoprotein enhances PMN phagocytosis by binding to cell surface-expressed lactoferrin and cathepsin G that activates MAP kinase pathway.

نویسندگان

  • Syue-Cian Siao
  • Ko-Jen Li
  • Song-Chou Hsieh
  • Cheng-Han Wu
  • Ming-Chi Lu
  • Chang-Youh Tsai
  • Chia-Li Yu
چکیده

The molecular basis of polymorphonuclear neutrophil (PMN) phagocytosis-enhancing activity (PEA) by human purified urinary Tamm-Horsfall glyco- protein (THP) has not been elucidated. In this study, we found human THP bound to lactoferrin (LF) and cathepsin G (CG) expressed on the surface of PMN, identified by a proteomic study with MALDI-TOF- LC/LC/mass spectrometric analysis. Pre-incubation of 10% SDS-PAGE electrophoresed PMN lysates with monoclonal anti-LF or anti-CG antibody reduced the binding with THP. To elucidate the signaling pathway of THP on PMN activation, we found THP enhanced ERK1/2 phosphorylation, reduced p38 MAP kinase phosphorylation, but had no effect on DNA binding of the five NF-kB family members in PMN. To further clarify whether the carbohydrate-side chains or protein-core structure in THP molecule is responsible for THP-PEA, THP was cleaved by different degrading enzymes with carbohydrate specificity (neuraminidase and β-galactosidase), protein specificity (V8 protease and proteinase K) or glycoconjugate specificity (carboxylpeptidase Y and O-sialoglycoprotein endopeptidase). We clearly demonstrated that the intact protein-core structure in THP molecule was more important for THP-PEA than carbohydrate-side chains. Putting these results together, we conclude that THP adheres to surface-expressed LF and CG on PMN and transduces signaling via the MAP kinase pathway to enhance PMN phagocytosis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

EGF receptor-dependent mechanism may be involved in the Tamm-Horsfall glycoprotein-enhanced PMN phagocytosis via activating Rho family and MAPK signaling pathway.

Our previous studies showed that urinary Tamm-Horsfall glycoprotein (THP) potently enhanced polymorphonuclear neutrophil (PMN) phagocytosis. However, the domain structure(s), signaling pathway and the intracellular events responsible for THP-enhanced PMN phagocytosis remain to be elucidated. THP was purified from normal human urine. The human promyelocytic leukemia cell line HL-60 was induced t...

متن کامل

Tamm-Horsfall Protein is a Potent Immunomodulatory Molecule and a Disease Biomarker in the Urinary System.

Tamm-Horsfall protein (THP), or uromodulin (UMOD), is an 80-90-kDa phosphatidylinositol-anchored glycoprotein produced exclusively by the renal tubular cells in the thick ascending limb of the loop of Henle. Physiologically, THP is implicated in renal countercurrent gradient formation, sodium homeostasis, blood pressure regulation, and a defense molecule against infections in the urinary system...

متن کامل

Role of Tamm-Horsfall protein in the binding and in vivo phagocytosis of type 1 fimbriated Escherichia coli by mouse peritoneal macrophages.

Tamm-Horsfall glycoprotein (THP) contains manno-oligosaccharides that are recognized by type 1 fimbriae (F1) of Escherichia coli. In the present study, we examined the in vivo phagocytic activity of mouse peritoneal macrophages after treatment of bacteria with THP. At low THP concentrations (12.5 microg/ml and 50 microg/ml) no significant difference was observed in the phagocytosis of E. coli F...

متن کامل

Engagement of ICAM-3 activates polymorphonuclear leukocytes: aggregation without degranulation or beta 2 integrin recruitment.

ICAM-3 is a preferred counterreceptor for the leukocyte alpha(L)beta2 integrin. It activates T cells through outside-in signaling, but polymorphonuclear leukocytes (PMN) are reported to be refractory to ICAM-3 stimulation. We found that engagement of ICAM-3 by a mAb (CAL3.10), which binds in the region where alpha(L)beta2 integrin binds, activates PMN homotypic aggregation and adhesion to surfa...

متن کامل

Regulation of polymorphonuclear leukocyte degranulation and oxidant production by ceramide through inhibition of phospholipase D.

Exogenous C(2)-ceramide has been shown to inhibit polymorphonuclear leukocyte (PMN) phagocytosis through inhibition of phospholipase D (PLD) and downstream events, including activation of extracellular signal-regulated kinases 1 and 2, leading to the hyphothesis that the sphingomyelinase pathway is involved in termination of phagocytosis. Here it is postulated that increased PLD activity genera...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecules

دوره 16 3  شماره 

صفحات  -

تاریخ انتشار 2011